| Course
Type | Course
Code | Name of the Course | L | T | P | Credits | |----------------|----------------|--------------------------------------|---|----|---|---------| | DSC | NCHC101 | Introduction to Chemical Engineering | 3 | .0 | 0 | 3 | ## **Course Objective** Students would be able to understand the chemical sector and role of chemical engineers. ## **Learning Outcomes** Students would be able to understand and predict the growth of various chemical sectors and would be able to understand the sequence of processing steps in chemical industry. | Unit
No. | Topics to be Covered | Lecture
Hours | Learning Outcome | |-------------|--|------------------|---| | 1 | Introduction: Chemical Engineer and Chemical Engineering Profession, Introduction to Unit Operations, Basic Laws, Useful Mathematical Methods, Units and Dimensions, Dimensional Analysis | 8 | Students will know the principles and calculation techniques | | 2 | Material balance: Introduction, material balances for processes without chemical reaction, material balances involving recycle, bypass and purge; application in chemical industries | 4 | Students will acquaint with material balance in process industries | | 3 | Energy balances: Introduction to energy balances, terminologies, Steady state energy balances for the processes without reaction, steady state energy balances for the processes with reaction | 4 | Students will acquaint with basic energy balance in chemical and allied industries | | 4 | Chemical Engineering Principles: Fluid flow, Heat Transfer, Chemical kinetics and separation processes | 16 | Students will acquaint with basic chemical engineering principles and process equipment | | 5 | Overview of chemical process equipment: Heat Exchanger, Distillation column | 5 | Students will acquaint with basic process equipment | | 6 | Relevant Case studies | 5 | Overall idea of process industry | ## Textbooks: - 1. Himmelblau, D. M. and Riggs, J. B. (2012). Basic Principles and Calculations in Chemical Engineering. 8th Ed., PHI, Eastern Economy Edition - 2. Mc-Cabe, W.L., Smith J.M., and Harriott, P., (2004). Unit Operations in Chemical Engineering, 7th edition McGraw Hill. - 3. Yunus A. Cengel, Afshin J. Ghajar, (2016) Heat and Mass Transfer 5th Ed., McGraw Higher Education. - 4. Treybal, R.E. (1981). Mass Transfer operations, 3rd Ed. McGraw-Hill Publication. - 5. Levenspiel, O. (2006). Chemical Reaction Engineering, 3rd Ed., Wiley. ## Reference books: - 1. Hougen, O. A., Watson, K. M. and Ragatz, R. A. (2004). Chemical process principles, 2nd Ed., John Wiley and Asia Publishing - 2. Perry, R. H. and Green, D. (Ed.) (2007). Perry' Chemical Engineering Handbook, 8th Ed., McGraw Hill 3. Sinnott, R. K. (2005). Coulson & Richardson's Chemical Engineering – Vol I - VI, Butterworth and Heinemann 4. Kern, D. Q. (2001) Process Heat Transfer 1st Ed., McGraw Higher Education. 2. Warren L. McCabe, Julian C. Smith, Peter Harriott, (2014). Unit Operations of Chemical Engineering 7th Ed., McGraw Higher Education. 5. Seader, J. D. and Henley, E. J. and Roper, D. K. (2010). Separation Process Principles, 3rd Ed., Wiley 28/1/24 19724 Alsonaria